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ABSTRACT

Variation in the climate acts as an important factor in managing the natural
resources in order to meet the needs of human life for present and future generations.
Future projections of the climate data obtained from the climate models help in
developing the policies for the sustainable use of natural resources. In the present
study, changes in the climate variables were assessed both spatially and temporally
using Regional Climate Models (RCM) database under Coordinated Regional
Downscaling Experiment (CORDEX) from Centre for Climate Change Research (CCCR),
Pune, for Krishna river basin, India. Uncertainties in the climate variables were reduced
by using Reliable Ensemble Averaging (REA) method. The results suggest that the
ability of REA data performs well throughout the basin except in the upper region of
the Krishna basin. First future period shows around 20 per cent decrease when
compared to the historic period where the other two future periods show a less
change in the precipitation.

Keywords: Climate Data, Regional Climate Models (RCM), Reliability Ensemble
Averaging (REA), River Basin.

Introduction

Thelocal and global pressures on natural
resources are increasing because of the external
forces like high living standards, anthropogenic
changes, land use and water management
policies etc. In addition, climate change is also

contributing pressure on natural resources
externally. Generally, the long-term change in
the properties of climate system due to natural
and forced variability and the effects of
anthropogenic activities is known as climate
change.The variations in climate system help in
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altering water availability regionally, selection of
the crop and vegetation based on the
evapotranspirative water demands, salt-water
intrusion in coastal regions, floods and drought
extremes, groundwater recharge, water quality
and other related processes. The additional stress
developed by this climate change on the natural
resources like water provides a clarity to the
water managers and policymakers for efficient
water supply for future periods (Mondal and
Mujumdar,2015). The future water demands will
be more uncertain in addition to the uncertainty
developed due to changes in demography and
climate (Yang et al., 2008).

Global Climate Models (GCMs) are the
coarse resolution climate models projected under
increased global temperatures for large spatial
scales, whereas finer spatial scales climate
models for the better management of the
resources at the basin level. Many studies have
proved that the use of regional climate data for
impact assessment is more reliable compared to
the global climate model data (Chien et al., 2013;
Deshpande, 2014; Demaria et al., 2016). The
climate models possess the biases and
uncertainty from one model to another. The
increase in skill and reliability of multi-model
ensembles compared to the single climate
model projections have demonstrated through
various studies (Giorgi and Mearns, 2003; Tebaldi
and Knutti, 2007). The Reliability Ensemble
Averaging (REA) is the method used to address
the uncertainty developed using different RCMs
(Giorgi and Mearns, 2003; Chandra et al,, 2015).

The biases in the REA precipitation data are
corrected statistically by Quantile- Quantile
(Q-Q) mapping which improves the ability to
project the future climate models data for
the impact and vulnerable studies (Piani et al.,
2010).

In India, Krishnariver is categorised as the
economical water-scarce and food-deficit basin
(Amarasinghe et al., 2004; Gosain et al., 2006).
The main feature of the basin being high crop
production, the seasonal or regular water
predictions are likely to experience stressed
conditions. It is also evident that the annual
average renewable water availability per person
is less than 500m3/cap/yr (Gosain et al., 2011)
which emphasise the importance of water supply
and demand in the basin.The main objective of
the study is to assess the changes in the climate
variables like precipitation, maximum and
minimum temperatures both spatially and
temporally. The climate model data obtained
from five RCMs of Representative Concentration
Pathways 4.5 (RCP) scenario used in developing
REA of the models. In addition to the REA, the
precipitation is bias corrected by QQ mapping
for projecting the future climate change.The REA
precipitation, maximum and minimum
temperatures are used in simulating the
availability of the water in the river basin using
any hydrological model. The climate variables
thus obtained help water managers and
policymakers in developing the adaptation
strategies for the substantial use of the water

resource.
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Study Area and Data Description Pradesh and Telangana (29.81%) and Maharashtra

Krishnariver is the fourth biggestriverin ~ (26.36%), India as shown in Figure 1.The basin
India with a total area of 258948 sg.km. It spreads  lies between 3°10"to 19°22" North latitudes and
across four States viz. Karnataka (43.8%), Andhra  73°17'to 81°9’ East longitudes.

o Spal_mob (e s |||
= —

| — —
TIPE WWE  AWE  WWE  TTWE WWE  Wes

+  Climate Grid Points DEM
River Network oy Hioh
[ ] Basin L___NP™

Figure 1: Location of the Krishna River Basin

The climate of the basin is tropical, with  basin are 20.73°C and 32.2°C. Various datasets
the average annual precipitation of 960 mmand  with their resolution are giveninTable 1.
the minimum and maximum temperature of the

Table 1: Description and Source of the Data

DataType Resolution Source
Digital Elevation 30m Advanced Spaceborne Thermal Emissionand
Model Reflection Radiometer (ASTER)
Observed 0.5°grid Indian Meteorological Department, Pune
Climate data
Climate 0.5°grid  Centre for Climate Change Research (CCCR), Indian Institute of
Model data Meteorology (IITM) Pune.ftp://cccr.tropmet.res.in/iRODS_DATA/
CORDEX-Data
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The DEM projects the minimum,
maximum and mean elevation of the basin as
18m, 1903m, and 518m. Approximately, 50.47
per cent of the total area falls under 500m to
750m elevation zone.The climate data include
maximum temperature (Tmax), minimum
temperature (Tmin) and precipitation with the
spatial resolution of 0.5°x0.5° for 132 grid points.

The ensemble of high-resolution pastand
future climate projections from regional scales
with a mid-range concentration path (RCP) 4.5
greenhouse gas (GHG) emissions scenario from
CCCR, Indian Institute of Tropical Meteorology,
Pune, India were obtained.The following are five
RCMs (Table 2) data used for the study:

Table 2: Details of RCM Models

Acronym Full Name
ACCESS
CCSm4
CNRM_CM5
NorESM 1

MPI-ESM-LR

Australian Community Climate and Earth System Simulator
Community Climate System Model

Centre National de Recherché Meteorologiques
Norwegian Earth System Model 1

Max Plank Institute Earth System Model

Among the different RCMS, it is difficult
to choose the most reliable RCM using same
anthropogenic forcing scenarios of GCMs as they
project the inter-model uncertainty. The
uncertainties in the climate model projections
are quantified using REA method.

Reliability Ensemble Averaging (REA)
Method

The REA method proposed by Giorgi and
Mearns, 2003, provides the calculation of best
estimate, range of uncertainty and the reliability
of regional climate model data based on the
ensemble of different climate change
projections. This method comprises two criteria
as model performance and convergence usedin
measuring the uncertainty and reliability of
regional climate change. Chandra et al., 2015
proposed an algorithm for generating the REA

climate variables like Precipitation, Minimum and
Maximum Temperatures of the RCMs. Initially,
model performance criteria carried by computing
the Root Mean Square Error (RMSE) using the
Cumulative Distribution Functions (CDF)
deviations between the observed and simulated
variables by dividing the total data into 10 equal
intervals for the reference period 1975-2005.
Inverse values of the RMSE considered as the initial
weights of the RCMs proportionately with the
sum of all weights equals to one. The model
convergence criterion has been calculated by
considering the CDF deviations between
individual RCMs for future time slices of Future
period 1(2010-2040), Future period 2 (2041-
2070) and Future period 3 (2071-2100) and
weighted mean CDF derived from model
performance criterion. Further, biases presentin
REA variables were corrected using the non-
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parametric quantile method. The maximum and
minimum temperatures of REA are more similar
to the IMD data with less bias where the REA
precipitation data possess the bias.

Quantile Mapping Method of Bias
Correction

Ensemble mean obtained using the REA
method compared with observed data resultsin
underestimated precipitation, whereas minimum
and maximum temperatures show better
agreement. Quantile mapping was widely used
statistical bias correction proposed by
Gudmundsson et al., 2012 due to its
computational efficiency and ability to handle
higher order moments. It performs bias correction
based on non-parametric transformation and the
empirical quantile of the simulated and observed
series. In addition, the major strength of the
technique is that it removes the bias from data
through entire range of distribution without any
rior distribution of dataset. Therefore, in the

present study, the authors applied the quantile
mapping to correct the weighted precipitation
series for all the grid points. The statistical
transformation used will derive a function h, such
that new distribution in mapping the modeled
variable P_is equal to the distribution with the
observed variable P_The statistical transformation
obtained from the Gudmundsson etal., (2012) is
as follows:

P,=h(P) (1)

The statistical transformation is modeled
using the non-parametric regression with the
monotonic tricubic spline interpolation. The
smoothing spline fits the fraction of the CDF-
corresponding to observed wet days by assigning
zero to the non-zero of the CDF-corresponding
to observed wet days by assigning zero to the
non-zero values of the modeled data. Figure 2
represents the REA precipitation data with
observed data before and after the transformation
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Figure 2: QQ Map of Observed Vs Modelled REA Precipitation Data
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Results and Discussion

REA method either carries out to improve
the climate model simulations, which poorly
perform in representing the present day climate
overaregion or contributes outlier simulationsin
the ensemble of the other models. Hence, it helps
in extracting the most reliable information from
each model for better agreement with the
observed data. Figure 3 represents the comparison
of mean monthly precipitation data of observed
and REA data for the four time periods. It suggests
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lower average values of monthly precipitation in
REA data throughout the year in the historicand
future periods for the Upper Bhima, Upper Krishna
and Upper Tungabhadhra compared to the
observed values. The other sub- basins
precipitation data propose ensemble model data
and observed data follow the pattern with an
annual change varying from 10 to 20 per cent.
The patterns of the precipitation datain all the sub
basins show a decreasing trend in comparison with
the observed data for all the future periods.
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Figure 3: Sub-basin wise variations in the mean monthly precipitation of the REA
climate data of the Krishna river basin for the Historic period (1970-2005), Future | (2010
-2040), Future 11 (2041 - 2070) and Future 111 (2071 - 2099) with respect to Observed
climate data (1970 - 2005).

The historic period temperature data
obtained from the REA method projects has less
variation when compared to the observed data
where the precipitation data exhibits more
variation as shown in Figure 3 for seven sub-basins

of the Krishna River.Hence, the REA precipitation
data with more variations are bias corrected using
quantile mapping technique.The maximum and
minimum temperatures obtained by the REA
method were able to simulate well as it shows
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fewer changes when compared with observed = model data recommend increased trend in the
data. Maximum and minimum temperaturesof ~ patterns for the future periods as shown in
the observed data compared to the ensemble  Figures4 &5.
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Figure 4: Subbasin-wise variations in the mean monthly maximum temperature of the
REA climate data of the Krishna river basin for the historic period (1970-2005), Future |
(2010 - 2040), Future 11 (2041 - 2070) and Future l11 (2071 - 2099) with respect to observed
climate data (1970 - 2005)
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Figure 5: Subbasin-wise variations in the mean monthly minimum temperature of the
REA climate data of the Krishna river basin for the historic period (1970-2005), Future |
(2010 - 2040), Future 11 (2041 - 2070) and Future Il (2071 - 2099) with respect to observed
climate data (1970 - 2005)
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The mean monthly maximum
temperature for the future period 2 (2040-2070)
projects highest values when compared to other
three periods. Table 3 represents the maximum

and minimum values of the REA data in
comparison with the observed data projecting a
decreasein the precipitation and increase in the
temperature data.
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Quantile Mapping

The climate models ability in predicting
the precipitation data of the sub-basins like Upper
Bhima, Upper Krishna and UpperTungabhadra
fails in projecting at the Western Ghats regions
as it shows the maximum variations.Therefore,
the bias in the REA climate model data is reduced
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by applying the statistical bias correction to the
REA precipitation data. Spatial variations of the
observed data and bias corrected ensemble
precipitation data for the months of June, July,
August and September for the historic and future
periods are shown in Figures 6 to 10.
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Figure 6: Observed mean monthly precipitation of June, July, August, and September
during 1975-2005
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Figure 7: REA based mean monthly precipitation of June, July, August and September for

Historic period (1975 -2005)

June August
PCPmm/day PCPmm/day
{ g , 8
A 6
3 4
1 ! 1 1 1 1
750 775 800 750 775 800
Longitude Longitude
July September
PCPmm/day
18—
@ @
e e}
= =
®167 G
e el
14—

75{0 77I.5 80I.0 75I,0 77IA5 SOIAO
Longitude Longitude
Figure 8: REA based mean monthly precipitation of June, July, August, and September for
Future-l period (2006-2040)
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Figure 9: REA based mean monthly precipitation of June, July, August, and September for

Future-l period (2041-2070)
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Figure 10: REA based mean monthly precipitation of June, July, August, and September
for the Future3 period (2071 - 2099)
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Observations were carried out by dividing
the Krishnariver basin into four regions such as
the South East (SE), South West (SW),North East
(NE) and North West (NW). Comparison of the
precipitation data in the Figures 9&10 suggest
highest observed value in the SW region of the
basin than in the historic period, which projects
the reliability of the models in projecting the
outliers of the precipitation data. The other
regions project similar variations of the historic
precipitation data when compared to the
observed data. For the future periods the mean
monthly precipitation changes varying between
Tmm/day to 8mm/day (Figure 7), 3mm/day to
10mmy/day (Figure 9) and 3mm/day to 12mm/
day (Figure 10).

Conclusion

In this paper, Reliability Ensemble Average
(REA) method is used in assessing the impact of
climate change on the Krishna river basin.The
REA data obtained from the five climate models
arein good correlation with the observed climate
data obtained from IMD for the middle and lower
regions of the Krishna river basin. The mean
monthly precipitation data for the historic period
obtained from the REA shows fewer variationsin
the Middle Krishna, Lower Krishna, and Lower
Tungabhadra. Around 20 per cent decrease in
the precipitation data in the Future 1 period is
observed when compared to the Historic period.
Therefore, hydrology of the river basin simulated
using the climate data obtained from REA for the
Future periods help water managers and
policymakers in developing the adaptation
strategies for proper utilisation of resources.
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